News

  • Daher-Socata TBM 850/900
    by [email protected] on July 8, 2021 at 9:17 pm

    Daher-Socata TBM 850/900 [email protected]… Thu, 07/08/2021 – 21:17 Daher-Socata’s TBM 850 and 900 airplanes, powered by the ubiquitous Pratt & Whitney Canada PT6 engine, are amongst the fastest of the current crop of single-engine turboprop airplanes.  And while these airplanes do differ somewhat, they have far more in common than not.  Both the 850 and 900 are type designated the TBM 700N – the 900 being differentiated by certain modifications – both have a top speed of 270 KIAS (Knots – Indicated Airspeed), both utilize the PT6A-66D engine, both have a maximum seating capacity of five and the same internal cabin space, and both have the same maximum takeoff weight.  From a specifications standpoint, the only significant difference is the slightly longer wingpsan and wing area of the 900.  Differences do exist in performance, however, with the 900 sporting a shortened takeoff distance over a 50′ obstacle and a published range increase of almost 150 nautical miles.   Although the original TBM – the 700 – received its type certification nearly a quarter century ago, the 850 and the 900’s type certificates are of far more recent vintage.  The first iteration of the 850, which did not feature a glass cockpit, received its type certificate on November 28, 2005.  A version that featured Garmin’s G1000 avionics system was certified in 2007.  The most recent version, the TBM 900, was certified in December 2013. Channel Business Aviation Market Indicator Code ALL Category Business – Turboprop Image TBM 850 Article page size 10 Profile page size 20 Program Profile ID 402606

  • Yakovlev Yak-130
    by [email protected] on June 29, 2021 at 9:17 pm

    Yakovlev Yak-130 [email protected]… Tue, 06/29/2021 – 21:17 Creative Commons (CC BY 2.0) The Yakovlev Yak 130 is a Russian advanced jet trainer and light attack aircraft. It is powered by two Ivchenko-Progress AI-222-25 turbofan engines supplying 5,500 lbf. (2,500 kgf) of thrust each. Program History In the early 1990s the Russian air force sought to procure a new advanced jet trainer to replace the Czech Aero Vodochody L-39 Albatros. At the time of the dissolution of the Soviet Union, approximately 1,000 L-39s were in Soviet Air Force service. After the Czech Republic ceased delivering new L-39s and spares, and with the Soviet fleet over a decade into its service life, a replacement would be necessary by the mid-2000s. L-39 replacement initiatives began even before this need became apparent, however. In June 1990 the Soviet State Military Industrial Commission issued a resolution ordering the development of a new trainer. The requirement was finalized in October of that year. It described a two-engine aircraft with a 170km/h (91.8 kt) landing speed, a 1,350 nmi (2,500 km) ferry range, a 0.6-0.7 thrust-to-weight ratio and an austere runway capability. Deliveries were to commence by 1994. Preliminary design studies were submitted by Mikoyan-Gurevich, Sukhoi, Yakovlev and Myasishchev, with Mikoyan and Yakovlev selected by the new Russian Ministry of Defense (MoD) in January 1992 to proceed with prototype development. The dissolution of the Soviet Union substantially delayed the timetable for the program. While Mikoyan moved ahead with its MiG Advanced Trainer (MiG-AT), Yakovlev started on its Yak-UTS. The MiG-AT first flew in March 1996 and had a low straight wing with engines mounted on either side of the fuselage at the wing root and a mid-mounted, lightly swept tailplane. It was intended to be inexpensive to operate and to offer improved fuel efficiency compared to the L-39. The Yakovlev proposal was less conventional, incorporating a high delta wing with a conventional tail and composite materials. In 1992, unable to secure enough funding from the Russian government, Yakovlev signed an agreement with Aermacchi to cooperate on designing a trainer. The project was dubbed Yak/AEM-130. Aermacchi had been working for some time on an “AT-X” jet trainer to market to European air forces, and from 1988 to 1991 had worked with Dornier on studies for such an aircraft. This had resulted in the AT-X12 and then the AT-2000 Mako, a tailed-delta design. Aermacchi’s early design work comported well with concepts for the Yak-130, whose configuration was approved by the Russian Ministry of Defense (MoD) in 1993. The Yak-130D demonstrator first flew in April 1996. Note that Mikoyan also secured foreign cooperation on its proposal, incorporating Turbomeca Larzac 04 engines and Thomson avionics into the MiG-AT design. In 1994 the first Yak-130 demonstrator was completed and dubbed the Yak-130D. It was airlifted to the Le Bourget airshow in June 1995, where it was put on static display. The demonstrator carried RD-35 engines manufactured by Klimov under a 1994 license agreement with Povazske Strojarne, the Slovak company with the rights to the DV-2 engine the RD-35 was derived from. The Yak-130D first flew in April 1996, a month after the first flight of the MiG-AT. Many of the test flights it conducted in the following years were carried out at Aermacchi facilities in Italy. The divergent requirements of the Russian and European trainer markets ultimately resulted in the dissolution of the Aermacchi-Yakovlev partnership at the end of 1999. Competing industrial imperatives made the partnership untenable; Russia sought to minimize the presence of foreign components in the design, while Aermacchi could not hope to produce or market an aircraft made predominantly in Russia. When the cooperation agreement ended, the parties agreed that both would have the right to produce their own derivatives of the basic Yak/AEM-130 design, and Yakovlev secured a $77 million ($118 million in 2019 USD) payment from Aermacchi in exchange for providing full documentation of the design. This funding was critical for the continuation of the program. Aermacchi quickly unveiled an aircraft it dubbed the M-346 Master, which is aerodynamically very similar to the Yak-130 and shares its design lineage because of the development partnership. In April 2002, the Yak-130 was declared the winner of the MoD’s trainer competition. The same year the Yak-130D’s flight test regime concluded, and the prototype was mothballed in 2004. In April 2004, the first production-standard Yak-130 flew. Flight trials for the production aircraft then took place over the next five years, first at Yakovlev and then with the Russian air force, with three aircraft eventually involved. A contract was signed between Yakovlev and the Russian MoD in May 2005 to procure 12 low-rate initial production (LRIP) aircraft. On July 26, 2006, the third prototype aircraft crashed with no loss of life, and the program was delayed as changes were made to the flight control software. In November 2007 the Yak-130 received a preliminary certificate from the military, and production of the 12 LRIP aircraft began. Flight tests were completed in December 2009, four years after the 2005 conclusion of static airframe tests. The first few serial production aircraft were manufactured at the Sokol aircraft manufacturing facility in Nizhny Novgorod, but the Irkutsk Aviation Plant became the sole assembler of the Yak-130 after entering the program in 2006. In February 2010 the Yak-130 entered Russian air force service. Features Overall Design The Yak-130’s overall aerodynamic and structural configuration changed somewhat from that of the Yak-130D. It remained a tailed delta aircraft with a stabilator and a swept vertical tail, but its fuselage was shortened by 16 in (41 cm), its wing area was reduced and its midsection was shrunk. This permitted significant weight reductions, increasing the thrust-to-weight ratio while retaining the principal features of the original design. The airframe also is built predominantly of light alloys, with carbon fiber composites extensively used for the control surfaces. To accommodate a radar, the nosecone also was enlarged. The wing is swept 31-deg. and fitted with leading-edge flaps. On the trailing edge, the wing is fitted with ailerons and fowler flaps. Both the wing and the horizontal stabilizer feature a dogtooth to induce vortices over the wing. This redirects spanwise airflow at high angles of attack, providing lift augmentation. Because of the Yak-130’s small size and its limited capabilities compared to two-seat derivatives of fighters like the MiG-29UB or Su-27UB, the Yak-130 is a less costly solution for transitioning pilots to combat aircraft. In a similar vein, many other air forces have adopted aircraft such as the Leonardo M-346 or KAI T-50 to fill the niche previously occupied by two-seater variants of their frontline fighter aircraft. To enhance its training capability, the Yak-130 includes an integrated virtual training system that permits live engagements against virtual targets. The system also includes a recording system for after-action reports and analysis. The two-person crew is seated in a tandem cockpit, with the student pilot in the front. The front and rear seats have 16-deg. and 6-deg. look-down visibility, respectively. For emergency egress, the aircraft is fitted with two K-36L-3,5Ya zero-zero ejection seats. The seats are designed to eject through the canopy, which is fitted with an explosive cord. The seats are rated for ejections at up to 567 kt (1,050 km/h) and at altitudes up to 4,265 ft (1,300 m). Life support is provided by an on-board oxygen-generating system (OBOGS) and an air-conditioning system aft of the cockpit. Because of the OBOGS, the aircraft is not dependent on airfield infrastructure to restore its oxygen supply between flights. A self-test system is built into the aircraft for ease of maintenance, and it also assists in conducting pre-flight checks to reduce the minimum time required to put the aircraft in the air. Irkut states that a given Yak-130 airframe can remain in operation for up to 30 years, and it offers an integrated logistics support package for its customers. The Yak-130 has a tricycle landing gear with low-pressure tires for high flotation over unpaved runways. Maneuverability and Flight Controls Though the Yak-130D had analog flight controls, the Yak-130 features KSU-130 quadruple-redundant fly-by-wire flight controls. These controls feature adjustable flight envelope restrictions allowing the Yak-130 to simulate aircraft with disparate maneuvering characteristics and to operate in a restricted envelope for earlier phases of pilot training. Leading-edge root extensions and leading-edge flaps allow flight at up to a 40-deg. angle of attack. For safety, the aircraft is equipped with an automated spin recovery system and flight envelope protections. Engines The Yak-130 is powered by two Ivchenko-Progress AI-222-25 engines producing 5,500 lbf. (2,500 kgf) of thrust each. The engines were produced jointly by Ukraine’s Motor Sich and Russia’s MMPP Salyut until 2015, when Salyut declared it was now fully capable of independently building the engine. Air intakes are covered by doors during taxiing, takeoff and landing to reduce the risk of foreign object debris (FOD) ingestion from unimproved runways. When operating in this mode, auxiliary intake doors open in the top of the wing root, thereby getting oxygen to the engine with a dramatically lessened risk of FOD ingestion. This is similar to the intake door system designed for the MiG-29. A TA14-130 auxiliary power unit (APU) supplied by Aerosila is used to start engines and generate AC power. The APU can be activated in-air to restart the engines if necessary, and it exhausts to the starboard side of the aircraft. Fuel is stored in three internal fuel tanks—one in the fuselage aft of the cockpit and one in each wing. Altogether this represents 3,747 lb. (1,700 kg) of fuel capacity, though in normal operation the Yak-130 typically carries around half of this maximum. Two PTB-450 drop tanks can be carried underwing, each with a capacity of 992 lb. (450 kg) of fuel. Avionics The Yak-130 features a K-130.01 full glass digital avionics suite. The suite is built around two BTsVM90-604 computers and a three-channel multiplex databus. Data from the system is displayed primarily on three MFTsi-0333M 6×8-in., full-color multifunctional displays for each pilot station. The forward station also includes an ILS-2-02 head-up display (HUD) with a PUI-130 up-front control panel (UFCP). This UFCP also is included in the rear station despite the lack of the HUD. For navigation, the Yak-130 carries an RPKB/Sagem LINS-100RS-02 inertial navigation system with an A737 global navigation satellite system (GNSS) receiver. The LINS-100RS-02 is designed around a ring laser gyroscope to provide enhanced accuracy over traditional inertial navigation systems (INS). It also carries a VNIIRA RSBN-85 tactical air navigation (TACAN) system, an ARK-40 automatic direction finder and an A-053-06 radio altimeter. For combat purposes, the aircraft carries the SUO-130 weapons management system and the Izdeliye 4280 identification friend or foe (IFF) system. The Yak-130 can carry a podded variant of the Platan IRST. The Platan also is carried on the Su-34, but in that configuration is integrated directly into the Su-34’s fuselage. Defensive Countermeasures For self-protection, the Yak-130 can carry two electronic countermeasures (ECM) pods. It also can carry wingtip-mounted UV-26M 26mm flare dispensers, each of which can carry 32 flares. Armament The Yak-130 has six underwing weapons pylons, two wingtip missile/pod rails and one underbelly pylon for a gun pod. It can carry a maximum of 6,614 lb. (3,000 kg) of payload. Possible weapons stores for the Yak-130 include: Four R-73E short-range infrared homing air-to-air missiles (AAMs) capable of attacking targets up to 16.2 nmi (30 km) away maneuvering under load factors up to 12 G. Four Kh-25M air-to-ground missiles with canard controls and a modular seeker system. The KH-25M can be fitted with semi-active laser, television, infrared imaging, active radar, GNSS/INS and antiradiation seekers. S-5 family 57 mm rockets, S-8 family 80 mm rockets, S-13 family 122mm rockets and S-25 family 266mm rockets in UB-32, B-8M1, B-13L or PU-O-25 pods, respectively. 551 lb. (250 kg) or 1,102 lb. (500 kg) FAB-250/500 series bombs. PTB-450 drop tanks on the innermost pylons. An SNPU-130 gun pod carrying a GSh-23L 23mm twin-barrel autocannon with 110 rounds of ammunition carried aboard the centerline hardpoint. The pod also can be replaced with a laser-based simulator for training The aircraft also supports a helmet-mounted cueing system (HMCS) for carriage of the R-73E. Variants Yak-130D The Yak-130D was the demonstrator built for the early flight-test phase of the Yak-130 program. Besides the previously mentioned differences in aerodynamic configuration from the demonstrator to the production aircraft, the Yak-130D has analog instrumentation with one small MFD in lieu of the glass cockpit used on the final Yak-130 design. It also lacks wingtip missile rails and the OBOGS. Yak-130 Yak-130 is the designation for the base variant of the aircraft. At the izdeliye level, there are three subvariants of the Yak-130: the Yak-130.01, manufactured at the Sokol facility in Nizhny Novgorod; the Yak-130.11, manufactured at Irkutsk; and the Yak-130.12, the export variant of the aircraft. Yak-131, Yak-133 and Yak-135 Proposals The Yak-131, Yak-133 and Yak-135 were a series of modification proposals developed throughout the late 1990s and early 2000s to develop mission-specific Yak-130 variants. Of these variants, the Yak-131 was to incorporate a radar and expanded weapons options, the Yak-133 was to be a single-seat ground-attack aircraft and the Yak-135 was to be a supersonic single-seat light fighter. Derivatives of the Yak-133 design also were considered, namely the Yak-133IB fighter-bomber, the Yak-133R reconnaissance aircraft and the Yak-133P escort jammer. None of these designs ever progressed to concrete prototyping or production work. Yakovlev has instead taken an incremental approach to expanding the capabilities of the Yak-130 platform. Proryv UAV Family Yakovlev also considered developing a family of unmanned aerial vehicles (UAVs) out of the Yak-130 airframe. These were to have a maximum takeoff weight of around 22,046 lb. (10,000 kg) and would have included the Proryv-U strike aircraft capable of flying at 594 kt (1,100 km/h) with a 6,614 lb. (3,000 kg) weapons load, the Proryv-R reconnaissance variant and the Proryv-RLD early warning variant. The Proryv-R and Proryv-RLD were to feature high-aspect-ratio, unswept wings. Yak-130M This designation is applied to a developmental aircraft integrating upgraded avionics, a strengthened undercarriage, plumbing for a removable in-flight refueling (IFR) probe and the LD-130 laser rangefinder described in the “Upgrades” section. The IFR probe is designed to meet the MIL-A-87166 standard. MIL-A-87166 is a deprecated standard for aerial refueling systems that was maintained by the U.S. Air Force prior to its cancellation in 1996. Lightweight Strike Aircraft (LUS) Called “Легкий ударный самолет” (Logkiy Udarnyi Samolyot) in Russian, the LUS is a concept to develop a dedicated light attack aircraft out of the Yak-130. The LUS would include further avionics upgrades, an OEPrNK electrooptical targeting system and a nose radar. The radar is likely to be either the Phazotron FK-130 Kopyo-50, NIIP Bars-130 or the Leonardo Grifo-200 and the new targeting system will enable the integration of both the Kh-38M air-to-ground missile and Kh-31 antishipping/antiradiation missiles. Upgrades LD-130 Laser Rangefinder At MAKS 2015 Irkutsk unveiled a modified Yak-130 with a nose-mounted LD-130 laser rangefinder and target designator. The LD-130 also integrates an electrooptical system for target acquisition. Because this system is not gimbaled and appears to have a limited frontal field of regard, its utility against ground targets is inferior to those of podded systems such as the Lockheed Martin AN/AAQ-33 Sniper Advanced Targeting Pod. It is apparently intended mostly as an aiming aid for the podded cannon. SM-100 Turbofan Engine Following the exclusion of Motor Sich from AI-222-25 production for the Yak-130, Salyut has sought to independently develop and build a new engine for the aircraft. It has dubbed the notional engine the SM-100. Aside from achieving industrial independence for the Yak-130 program, Salyut intends to raise the thrust to 6,614 lbf. (3,000 kgf) by incorporating an afterburner. Talisman-NT Electronic Warfare Suite The aircraft Irkutsk displayed at MAKS 2015 also carried wingtip-mounted Talisman-NT electronic warfare pods manufactured by the Belarusian company Defense Initiatives. These pods provide self-protection in the frontal and rear arcs against active and semi-active radar homing and infrared homing surface-to-air and air-to-air missiles (SAMs and AAMs). Talisman-NT also is effective against command-guided SAMs, and it appears to integrate with the existing podded chaff/flare dispenser and EW system designed for the Yak-130. The protection arcs cover 90 deg. horizontally and 60 deg. vertically from the nose and tail. Threat warning is provided by radar warning receivers and a missile approach warning system that display threat information on one of the cockpit MFDs. The system can react to threats autonomously. It is apparently designed to jam threat radar systems, prematurely detonate the radio proximity fuses of approaching missiles and automatically launch flares against incoming IR-guided missiles. Finally, the system can pass target data to antiradiation missiles. The manufacturer claims 10 W of output power (1,400 W input) over the 2.0-18.0 GHz radio band. Production and Delivery History Algeria Algeria placed an order in March 2006 for 16 Yak-130s to be delivered from 2008 to 2009. After three years of delays, the first aircraft were delivered in November 2011 and the remainder arrived in 2012. They have export-standard identification friend-or-foe equipment, and their cockpit instrumentation is scaled in imperial units. All labels on the aircraft are in French. These aircraft also were ordered with UV-26M wingtip flare dispensers. The contract reportedly included a significant option for additional aircraft. Bangladesh Bangladesh placed an order for 16 Yak-130s in 2013. It anticipated delivery of the aircraft in 2015 and 2016; by the end of 2015 six had been inducted and the remaining 10 followed in 2016 as expected. On July 11, 2017, a Bangladeshi Air Force Yak-130 crashed at Lohagora, Chittagong, due to a fault in the flight control system. Another accident followed on Dec. 27, 2017, when two more Yak-130s suffered a midair collision. Accordingly, only 13 remain in service in 2021. Belarus In December 2012 the Belarusian MoD ordered four Yak-130s with delivery expected in 2015. The four aircraft were inducted into Belarusian Air Force service on April 27, 2015. In August 2015, Belarus ordered a further four aircraft, which were delivered in 2016. Four more were contracted in 2018 and delivered by July 2019. The 12 aircraft are used primarily for light attack in Belarusian service and are teamed with Su-25s. On May 19, 2021, a Belarusian Yak-130 was lost in a crash. Iran From 2016 Iran considered ordering up to 24 Yak-130s from Russia as part of a wider arms deal, but as of June 2020 nothing had materialized to this end. Laos A $300 million contract for 10 Yak-130s was signed in August 2017. The first four of these aircraft were delivered in December 2018 by an Il-76. This delivery marked the reintroduction of an aerial combat capability Laos had lost in the 2000s with the retirement of its MiG-21s. Libya A contract was signed with Libya in January 2010 for the procurement of six aircraft. The civil conflict that began during the Arab Spring in February 2011 and culminated in the October 2011 downfall of the Gaddafi regime ensured that the contract would never be fulfilled. Malaysia Irkutsk has offered the Yak-130 for the Royal Malaysian Air Force’s light combat aircraft competition, under which Malaysia hopes to acquire at least 36 aircraft. To meet Malaysia’s requirements, Russia is offering the aircraft with the NIIP Tikhomirov Bars-130, a downsized derivative of the Bars-M radar used on Malaysia’s Su-30MKM. It also will carry enhanced countermeasures, with UV-26M pods at the wingtips and two underwing ECM pods incorporating infrared and radar warning receivers. The Yak-130’s commonality in manufacturing and maintenance with the Su-30MKM may make the aircraft more attractive against its competitors, the KAI FA-50, the BAE Hawk, the Sino-Pakistani JF-17 Thunder, the Chinese L-15 Hongdu, the Czech L-39NG, the HAL LCA Tejas and the Leonardo M-346FA. Irkutsk also is offering to provide the aircraft as knockdown and semi-knockdown kits as an industrial offset. Myanmar In 2015 Myanmar placed an order for 14 Yak-130s. Six were delivered in 2017 and eight followed in 2019 for a total of 14 in service. Nicaragua In April 2015 the head of Nicaragua’s armed forces indicated that Nicaragua would acquire six new light attack aircraft in the coming years. He mentioned the EMB-314 Super Tucano, the Yak-130 and the MiG-130. Despite the wide range of capabilities apparently under consideration in June 2017 the Nicaraguan newspaper La Prensa reported that the government had selected the Yak-130. It is clear that the government has a preference for the Yak-130 but it is unlikely that a firm agreement has been or can be reached on procurement due to Nicaragua’s limited fiscal resources. Russia In December 2011 the Russian MoD signed a contract with Irkut Corporation for the procurement of 55 Yak-130s, which were to be delivered by 2015. These aircraft would complement the twelve low-rate initial production (LRIP) aircraft already procured under a May 2005 contract with Sokol. Only the LRIP aircraft were built at the Sokol plant in Nizhny Novgorod. In December 2013, the MoD ordered 12 more aircraft for a new aerobatic display team. The same month, 10 aircraft were ordered for the Russian Navy. Irkut was awarded another contract in 2018 for 30 Yak-130s. Sometime in 2019 the MoD is believed to have ordered an undisclosed number of additional aircraft. Finally, in August 2020 the Russian MoD announced another contract for 25 Yak-130s. In total, Aviation Week believes 151 aircraft have been ordered. As of May 2021, 111 had been delivered, with five more to follow by the end of the year. On May 29, 2010, a Yak-130 crashed due to the flight envelope protection system reacting to incorrect maintenance parameters set by the ground crew. The aircraft was grounded while the flight control software was rewritten. Another crash occurred in April 2014, with one pilot killed. Because of these crashes, 109 Yak-130s are in Russian Air Force service in 2021. The four remaining trials aircraft remain with Yakovlev, and the Yak-130D was donated to the Monino Central Air Force Museum. Syria In December 2011 Syria signed a contract for the procurement of 36 Yak-130s. For political and financial reasons related to the catastrophic civil war that began that year after the Syrian state responded to Arab Spring protests with force. The contract was never canceled, and efforts were made into 2014 to begin deliveries of the aircraft, but they have not materialized as of May 2021. In June 2019 Syrian Arab Air Force (SyAAF) pilots reportedly were dispatched to Russia to receive training on the Yak-130, but it is not clear whether this was related to the procurement contract or was intended to train Syrian pilots for other aircraft as part of Russian efforts to support the beleaguered Syrian military. Vietnam In January 2020 Vietnam signed a $350 million contract to procure 12 Yak-130s to replace its L-39 jet trainers. The new aircraft will join the 915th Training Aviation Regiment of the Vietnam Peoples Air Force.  the 915th Training Aviation Regiment of the Vietnam Peoples Air Force. Channel Defense Market Indicator Code Military Category Trainers and Light Combat Aircraft Article page size 10 Profile page size 10 Program Profile ID 10441

  • The UFO Debate: Revenge of the Aliens?
    by [email protected] on June 21, 2021 at 9:01 am

    The UFO Debate: Revenge of the Aliens? [email protected]… Mon, 06/21/2021 – 09:01 The 2017 revelation that a secret U.S. Defense Department program has investigated reports of UFOs is hardly a new topic: debate about whether the UFOs existed – and the Pentagon was covering up their existence — was covered extensively in Aviation Week & Space Technology more than 50 years ago. And our reporting had a decidedly anti-extra-terrestrial bent. Philip J. Klass, Aviation Week’s legendary avionics editor, published an in-depth analysis in the summer of 1966 suggesting that some reported sightings of UFOs were actually “luminous plasmas of ionized air, a special form of ‘ball lightning’ generated by electric corona that occurs on high-tension power lines under certain conditions.”    Read the full analysis in Aviation Week’s archiveKlass noted that a then-popular book about UFO sightings near Exeter, New Hampshire, “expresses the belief that top Air Force and government officials know that the UFOs are extra-terrestrial spacecraft but successfully kept this a secret for nearly two decades to prevent national panic.” But he was skeptical. “A much more plausible scientific explanation emerges when the Exeter sightings are analyzed,” he wrote, devoting another four pages to lay out that analysis.   Philip J. Klass’ avocation was debunking sightings of UFOsKlass went on to become a leading skeptic of UFO sightings, traveling extensively to conduct investigations first hand. In 1976, he, astronomer Carl Sagan, science fiction writer Isaac Asimov and other notables founded the Committee for the Scientific Investigation of Claims of the Paranormal. Klass also wrote six books debunking reports on UFO incidents and published “The Skeptics of UFO Newsletter” in his spare time. I had the privilege of knowing Phil early in my career and even co-wrote an article with him – on signals intelligence, not UFOs – in the late 1990s. But when I went looking for his 2005 obituary in our bound volumes of past issues, the page had been mysteriously torn out.  Revenge of the aliens?     Content summary This commentary was originally published on December 21, 2017. Article type Article Primary Category Space Author Joe Anselmo Content source AviationWeek.com Exclude from lists? No Article sub-type Article Gating AWIN Featured Image ufo1966.jpg Publication date Fri, 06/21/2019 – 05:01 Secondary Categories/Subcategories Aerospace Is iframe in the header? Off

Greenwood Aerospace News

Fire Danger

Fire Danger